54 research outputs found

    Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers

    Get PDF
    We have fabricated and tested submillimeter-wave superconductor–insulator–superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc[approximate]30 kA cm–2). The junctions have low-resistance-area products (RNA[approximate]5.6 Omega µm2), good subgap-to-normal resistance ratios Rsg/RN[approximate]10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omegaRNC = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX = 110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits

    Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Get PDF
    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere

    Fabrication of wide-IF 200–300 GHz superconductor–insulator–superconductor mixers with suspended metal beam leads formed on silicon-on-insulator

    Get PDF
    We report on a fabrication process that uses SOI substrates and micromachining techniques to form wide-IF SIS mixer devices that have suspended metal beam leads for rf grounding. The mixers are formed on thin 25 µm membranes of Si, and are designed to operate in the 200–300 GHz band. Potential applications are in tropospheric chemistry, where increased sensitivity detectors and wide-IF bandwidth receivers are desired. They will also be useful in astrophysics to monitor absorption lines for CO at 230 GHz to study distant, highly redshifted galaxies by reducing scan times. Aside from a description of the fabrication process, electrical measurements of these Nb/Al–AlNx/Nb trilayer devices will also be presented. Since device quality is sensitive to thermal excursions, the new beam lead process appears to be compatible with conventional SIS device fabrication technology

    Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads

    Get PDF
    A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level

    ARCONS: a highly multiplexed superconducting UV to near-IR camera

    Get PDF
    ARCONS, the Array Camera for Optical to Near-infrared Spectrophotometry, was recently commissioned at the Coude focus of the 200-inch Hale Telescope at the Palomar Observatory. At the heart of this unique instrument is a 1024-pixel Microwave Kinetic Inductance Detector (MKID), exploiting the Kinetic Inductance effect to measure the energy of the incoming photon to better than several percent. The ground-breaking instrument is lens-coupled with a pixel scale of 0.23"/pixel, with each pixel recording the arrival time (<2 microsec) and energy of a photon (~10%) in the optical to near-IR (0.4-1.1 microns) range. The scientific objectives of the instrument include the rapid follow-up and classification of the transient phenomena.Comment: To appear in the proceedings of IAU symposium number 285; New Horizons in Time Domain Astronomy, eds. R.E.M Griffin, R. J. Hanisch & R. Seama

    Making AlN(x) Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam

    Get PDF
    A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlN(x)) for use as tunnel barriers in Nb/Al-AlN(x)/Nb superconductor/insulator/ superconductor (SIS) Josephson junctions. AlN(x) is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability. While ultra-thin AlN films with good thickness and stoichiometry control are easily formed using techniques such as reactive molecular beam epitaxy and chemical vapor deposition, growth temperatures of 900 C are necessary for the dissociative adsorption of nitrogen from either nitrogen (N2) or ammonia (NH3). These growth temperatures are prohibitively high for the formation of tunnel barriers on Nb films because interfacial reactions at temperatures as low as 200 to 300 C degrade device properties. Heretofore, deposition by reactive sputtering and nitridation of thin Al layers with DC and RF nitrogen plasmas have been successfully used to form AlN barriers in SIS junctions. However, precise control over critical current density Jc has proven to be a challenge, as is attaining adequate process reproducibility from system to system. The present ion-beam technique is an alternative to the plasma or reactive sputtering techniques as it provides a highly controlled arrival of reactive species, independent of the electrical conditions of the substrate or vacuum chamber. Independent and accurate control of parameters such as ion energy, flux, species, and direction promises more precise control of film characteristics such as stoichiometry and thickness than is the case with typical plasma processes. In particular, the background pressure during ion-beam nitride growth is 2 or 3 orders of magnitude lower, minimizing the formation of compounds with contaminants, which is critical in devices the performance of which is dictated by interfacial characteristics. In addition, the flux of incoming species can be measured in situ using ion probes so that the dose can be controlled accurately. The apparatus used in the present ion-beam technique includes a vacuum chamber containing a commercial collimated- ion-beam source, a supply of nitrogen and argon, and an ion probe for measuring the ion dose. Either argon or nitrogen can be used as the feed gases for the ion source, depending on whether cleaning of the substrate or growth of the nitride, respectively, is desired. Once the Nb base electrode and Al proximity layer have been deposited, the N2 gas line to the ion beam is vented and purged, and the ion-source is turned on until a stable discharge is obtained. The substrate is moved over the ion-beam source to expose the Al surface layer to the ion beam (see figure) for a specified duration for the formation of the nitride tunnel barrier. Next, the Nb counter-electrode layer is deposited on the nitride surface layer. The Nb/Al- AlN(x)/Nb-trilayer-covered substrate is then patterned into individual devices by use of conventional integrated-circuit processing techniques

    Demonstration of a Thermally Coupled Row-Column SNSPD Imaging Array

    Get PDF
    While single-pixel superconducting nanowire single photon detectors (SNSPDs) have demonstrated remarkable efficiency and timing performance from the UV to near-IR, scaling these devices to large imaging arrays remains challenging. Here, we propose a new SNSPD multiplexing system using thermal coupling and detection correlations between two photosensitive layers of an array. Using this architecture with the channels of one layer oriented in rows and the second layer in columns, we demonstrate imaging capability in 16-pixel arrays with accurate spot tracking at the few-photon level. We also explore the performance trade-offs of orienting the top layer nanowires parallel and perpendicular to the bottom layer. The thermally coupled row-column scheme is readily able to scale to the kilopixel size with existing readout systems and, when combined with other multiplexing architectures, has the potential to enable megapixel scale SNSPD imaging arrays

    Identifying drivers of energy resolution variation in multi-KID phonon-mediated detectors

    Full text link
    Phonon-mediated particle detectors employing Kinetic Inductance Detectors (KIDs) on Silicon substrates have demonstrated both O(10) eV energy resolution and mm position resolution, making them strong candidates for instrumenting next generation rare-event experiments such as in looking for dark matter or in neutrino measurements. Previous work has demonstrated the performance of an 80-KID array on a Si wafer, however current energy resolution measurements show a 25x difference between otherwise identical KIDs on the same wafer - between 5 to 125 eV on energy absorbed by the KID. Here, we use a first principles approach and attempt to identify the drivers behind the resolution variation. In particular, we analyze a subset of 8 KIDs using the unique approach of pulsing neighboring KIDs to generate signals in the target. We tentatively identify differences in quality factor terms as the likely culprit for the observed variation.Comment: 7 pages, 6 figures, Proceedings for the 19th International Workshop on Low Temperature Detectors (LTD19
    • …
    corecore